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BACKGROUND: Transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) plays a key role in detoxification of electrophiles via formation
of glutathione (GSH) adducts and subsequent excretion into extracellular spaces. We found that reactive sulfur species (RSS), such as cysteine persul-
fides produced by cystathionine c-lyase (CSE), capture environmental electrophiles through formation of sulfur adducts. However, contributions of
Nrf2 and CSE to the blockage of environmental electrophile-mediated toxicity remain to be evaluated.
OBJECTIVES: The aim of this study was to clarify roles that CSE and Nrf2 play in the protection against various environmental electrophiles. We also
wished to clarify the molecular basis of the developmental window of toxicity through investigating expression levels of Nrf2, RSS-producing
enzymes, and sulfur nucleophiles during developmental stages of mice.

METHODS: Wild-type (WT), CSE knockout (KO), Nrf2 KO, Nrf2/CSE double KO (DKO) mice, and their primary hepatocytes were analyzed in this
study. Cadmium (Cd), methylmercury (MeHg), 1,4-naphthoquinone, crotonaldehyde, and acrylamide were used. We conducted Western blotting, real-
time polymerase chain reaction (PCR), 3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyl tetrazolium bromide (MTT) assays, liquid chromatography–electrospray
ionization–tandem mass spectrometry (LC-ESI-MS/MS) analysis, alanine transaminase (ALT) activity, histopathological analysis, and rotarod test.
RESULTS: Primary hepatocytes from DKO mice were significantly more sensitive to the environmental electrophiles than each single KO counterpart.
Both Nrf2 and CSE single KO mice were highly susceptible to Cd and MeHg, and such sensitivity was further exacerbated in the DKO mice. Lower-
level expressions of CSE and sulfur nucleophiles than those in adult mice were observed in a window of developmental stage.

CONCLUSIONS: Our mouse model provided new insights into the response to environmental electrophiles; while Nrf2 is recognized as a key transcrip-
tion factor for detoxification of environmental electrophiles, CSE is crucial factor to repress their toxicity in a parallel mode. In addition, the sensitiv-
ity of fetuses to MeHg appears to be, at least in part, associated with the restricted production of RSS due to low-level expression of CSE. https://doi.
org/10.1289/EHP4949

Introduction
Humans are exposed to various environmental electrophiles on a
daily basis through food, air, and lifestyle. Some examples are
naphthoquinones produced by combustion of gasoline, crotonalde-
hyde in tobacco smoke, methylmercury (MeHg) accumulated in
fish, cadmium (Cd) in rice, and acrylamide in baked foods. Once
these electrophiles enter the body, they target nucleophilic centers
in various proteins and nitrogen atoms in DNA and form electro-
phile adducts, thereby exerting deleterious effects (Jan et al. 2015;
Kanda et al. 2014; Kumagai and Abiko 2017; Saeed et al. 2007;
Sumi 2008). However, it has been found that chemical modifica-
tion of sensor proteins with reactive thiols by environmental elec-
trophiles at low doses results in activation of cellular signal
transduction pathways to maintain cellular homeostasis (Abiko
et al. 2017a; Kumagai and Abiko 2017), although exposure to the
reactive species at high doses causes cell damage through nonse-
lective and excess modification of proteins and DNA (Kanda et al.
2014; Kumagai et al. 2012; Sumi 2008; Unoki et al. 2016).

Conjugation reactions of electrophiles with glutathione (GSH),
which lead to the formation of their GSH adducts, are thought to be
a canonical detoxification pathway of such reactive chemicals
(Ketterer et al. 1983) because electrophile–glutathione (SG) adducts
are polar substances and are rapidly excreted into extracellular
spaces through multidrug resistance–associated proteins (MRPs)
(Delalande et al. 2010; Kumagai et al. 2013; Toyama et al. 2011). In
this context, transcription factor Nrf2 (nuclear factor-erythroid 2-
related factor 2) has been shown to play a critical role in coordinat-
ing the cellular defense system by initiating the transcription of
many detoxification and antioxidative stress genes (Lu 2013),
including glutamate cysteine ligase (GCL; the rate-limiting enzyme
for GSH synthesis) to synthesize GSH derived from cysteine
(CysSH) (Lu 2013), glutathione S-transferase (GST) to facilitate
GSH adduct formation (Itoh et al. 1997), and MRPs to excrete
electrophile–GSH adducts into extracellular spaces (Hayashi et al.
2003; Itoh et al. 1997). Deletion of Nrf2 has been shown to
enhance cellular toxicity of environmental electrophiles, includ-
ing 1,2-naphthoquinone (1,2-NQ) (Miura et al. 2011) and MeHg
(Toyama et al. 2007) in primary mouse hepatocytes, and Cd
(Shinkai et al. 2016) in bovine vascular endothelial cells.
Furthermore, Nrf2 activation by chemopreventive agents, such
as sulforaphane, was effective to reduce MeHg accumulation and
toxicity in primary mouse hepatocytes (Toyama et al. 2011). In
contrast, GSH depletion in mice (Naganuma et al. 1988) and
in vitro using primary cell cultures of mouse cerebellar neurons
and astrocytes (Kaur et al. 2006) or MRP inhibition in rat pheo-
chromocytoma PC12 cell sublines (Miura and Clarkson 1993)
increased MeHg accumulation and toxicity, suggesting that Nrf2
is essential for the repression of environmental electrophile-
mediated toxicity through GSH adduct formation and their excre-
tion from cells to extracellular spaces.

Cystathionine c-lyase (CSE) is the final trans-sulfuration
enzyme required for cysteine biosynthesis from cystathionine
(Steegborn et al. 1999). CSE has also been shown to catalyze
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the production of CysSH persulfide (CysSSH) when cystine
(CysSSCys) is used as a substrate (Ida et al. 2014). Recently, an
in vitro (HEK293T cells) and in vivo (mouse model) study
revealed that cysteinyl-tRNA synthetase 2 (CARS2) also cata-
lyzed formation of CysSSH using CysSH as a substrate (Akaike
et al. 2017). CysSSH is converted to other reactive sulfur spe-
cies (RSS), such as GSH persulfide/polysulfide, hydrogen sul-
fide (H2S), and hydrogen persulfide (H2S2) (Ida et al. 2014;
Ono et al. 2014). RSS are highly nucleophilic and antioxidative
molecules (Ida et al. 2014), because sulfane sulfur within such
molecules easily reacts with electrophiles to form the corre-
sponding sulfur adducts (Kumagai and Abiko 2017; Millikin
et al. 2016; Nishida et al. 2016; Ono et al. 2014). For example,
we identified sulfur adducts of environmental electrophiles such
as bismethylmercury sulfide [ðMeHgÞ2S] (Yoshida et al. 2011),
cadmium sulfide (Akiyama et al. 2017), and 2-[(1,4-dioxonaph-
thalen-2-yl)sulfanyl]-3-hydroxynaphthalene-1,4-dione (Abiko et al.
2017b) during incubation of reactive persulfide/polysulfide with
MeHg, Cd, and 1,4-NQ (1,4-naphthoquinone), respectively. Such
sulfur adducts are weak electrophiles and less toxic than their par-
ent electrophiles (Abiko et al. 2015b, 2017b; Akiyama et al. 2017;
Yoshida et al. 2011), suggesting that RSS derived from CSE are
involved in the formation of inactive metabolites of environmental
electrophiles.

Consistent with this notion, exposure of mice to MeHg
resulted in production of ðMeHgÞ2S in various tissues of wild-
type (WT) but not CSE knockout (KO) mice (Abiko et al.
2015b), suggesting that CSE participates in diminishment of
environmental electrophile-mediated toxicity through formation of
sulfur adducts. Although we have reported that knockdown or dele-
tion of CSE enhances Cd-mediated toxicity both in vitro (Shinkai
et al. 2017) and in vivo (Akiyama et al. 2017), there remains to be
clarified how the protective function of CSE operates against other
environmental electrophile-mediated toxicities. In this study, there-
fore, we hypothesized that in addition to GSH adduct formation
regulated byNrf2, sulfur adduct formation regulated byCSE plays a
critical role in protection against environmental electrophiles. To
address this hypothesis, we have evaluated individual and concur-
rent contributions of Nrf2 and CSE to the suppression of environ-
mental electrophile-induced toxicity using Nrf2 KO, CSE KO, and
Nrf2/CSE double KO (DKO) mice. We also examined precise
expression profiles of Nrf2, RSS-producing enzymes including
CSE, and the levels of sulfur nucleophiles during developmental
stages of mice to assess contributions of both pathways to the devel-
opmental toxicity of the environmental electrophiles.

Methods

Materials
Acrylamide and cadmium chloride (CdCl2) were purchased from
Wako Pure Chemical Industries. Crotonaldehyde, MeHg, and
paraformaldehyde (PFA) were from Nacalai Tesque. L-Cysteine-
13C2,

15N was from Taiyo Nissan. GSH-ðglycine-13C2,
15NÞ

was from Toronto Research Chemicals. Amicon® Ultra 3K
centrifugal filters; 1,4-NQ; PD MiniTrap™ G-25; and b-
ð4-hydroxyphenylÞethyl iodoacetamide (HPE-IAM) were from
Millipore, Tokyo Chemical Industries, GE Healthcare, and
Molecular Biosciences, respectively. All other reagents and
chemicals were of the highest grades available.

Animals and Treatment
The experimental design of this study is shown in Figure 1.
C57BL6/J (WT) mice were purchased from Nippon Clea. CSE
KO mice (Ishii et al. 2010), Nrf2 KO mice (Itoh et al. 1997) on a

C57BL/6J background were maintained at the animal facilities at
University of Tsukuba. Nrf2 KO and CSE KO mice were bred to
generate heterozygous Nrf2/CSE DKO mice. These heterozygous
DKO mice were bred to each other to generate Nrf2/CSE DKO
mice. These mice were housed in plastic cages and maintained in
a climate-controlled animal room (temperature: 24± 1�C; humid-
ity: 55%±5%) with a 12-h light–dark cycle (lights on at 0700
hours and off at 1900 hours). Food (Certified Diet M; Oriental
Yeast) and water were freely available.

Genotypes were confirmed by polymerase chain reaction
(PCR) using tail DNA and the following primers: primer 1,
50-TGCCGACCAATAAGCAGGGC-30; primer 2, 50-CCGAGGA-
CTGGCCCGGGAAGT-30; and primer 3, 50-CCAGACCGGCAA-
CGAAAATCA-30; for CSE KO, primer 1 50-TGGACGGGACTA-
TTGAAGGCTG-30, primer 2, 50-GCCGCCTTTTCAGTAGATG-
GAGG-3 0, and primer 3, 5 0-GCGGATTGACCGTAATGGGAT-
AGG-3 0 for Nrf2 KO. PCR conditions were as follows: 96°C for
10 min; 40 cycles of 96°C for 30 s, 59°C for 30 s, 72°C for 30 s,
and then 72°C for 10 min. After genotyping, mice were divided
by gender and genotype.Males were used for the in vivoCd expo-
sure experiment. Females were used for the in vivo MeHg expo-
sure experiment or primary hepatocyte studies. Note: The gender
of the mouse is not chosen based on a specific biological reason.
The reason for dividing the mouse into male and female is to
reduce the number of animal sacrifices.

CdCl2 and MeHg were dissolved in saline and deionized
water, respectively. These solutions were prepared at the time of
use. Acute hepatotoxicity was induced in adult male WT, Nrf2
KO, CSE KO, and DKO mice (n=5, each genotype) by a single
intraperitoneal injection of CdCl2 (4 mg=kg). Eighteen hours af-
ter treatment, mice were anesthetized with pentobarbital, and
blood was collected with heparin via cardiac puncture, followed
by perfusion with 4% PFA in phosphate-buffered saline (PBS).
Plasma was isolated from blood by centrifugation at 800× g at 4°
C for 20 min. Fresh plasma was used for alanine transaminase
(ALT) assays. Liver tissues were dissected and fixed in 4% PFA
in PBS at 4°C overnight. Fixed tissues were embedded in paraffin
for histopathological analysis. Adult female WT, CSE KO, Nrf2
KO, and DKO mice (n=5, each genotype) were exposed to
MeHg (5 mg=kg once daily for 12 d) by oral intubation and then
subjected to the rotarod test. Survival of mice were monitored
daily for 30 d after the first treatment of MeHg. Untreated WT
mice at embryonic day (E) 15.5, postnatal day (P) 0, P7, P14, and
P56 (n=3, each age) were sacrificed; livers and brains were
removed and stored at −80�C for Western blotting analysis, sul-
fur nucleophile detection, CSE activity measurement, and real-
time PCR. Animal housing, husbandry, treatment, and euthanasia
were conducted under the guidelines of the Animal Care and Use
Committee of the University of Tsukuba. Experimental protocols
for mice were approved by the Animal Care and Use Committee
of the University of Tsukuba.

Preparation of Primary Mouse Hepatocytes
Primary hepatocytes were isolated as described previously (Shinkai
et al. 2009). Briefly, cells were isolated from adult femaleWT, CSE
KO, Nrf2 KO, and DKO mice by two-step collagenase perfusion.
Parenchymal hepatocytes were separated from nonparenchymal
cells by differential centrifugation (50 × g, 3 min, 4°C), resuspended
in Percoll buffer [Hank's balanced salt solution (HBSS) with 42%
Percoll, 0.25% bovine serum albumin fraction V, 20mM [4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid] (HEPES; pH 7.3)].
Living parenchymal cell pellet were separated from dead parenchy-
mal cell layer by density gradient centrifugation (50 × g, 3 min,
4°C) and subsequently washed in HBSS and recovered by centrifu-
gation (50× g, 3 min, 4°C). Final preparations were suspended at
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4:0× 105 cells=mL in William’s Medium E containing 10%
fetal bovine serum, 2mM L-alanyl-L-glutamine, penicillin
(100 units=mL), and streptomycin (100 lg=mL), then seeded at
a density of 8 × 104 cells=cm2 on 12- or 96-well type I collagen-
coated plates (Corning Inc.), and cultured at 37°C in a humidi-
fied atmosphere with 5% CO2. At 48 h after seeding, cells were
cultured in serum-free medium for 24 h. These preparation steps
were carried out independently three times from each genotype
mice and used for assays employed such as Western blotting
analysis, cell viability assay, and sulfur nucleophile detection,
as described below.

Western Blotting Analysis
Primary mouse hepatocytes in 12-well plates prepared as above
from adult female WT and CSE KO mice were exposed to CdCl2
(0, 1, 2, or 4 lM) in serum-free medium and cultured at 37°C in a
humidified atmosphere with 5% CO2. After 12 or 24 h, cells were
washed twice with ice-cold PBS. Total cellular protein samples
were prepared by lysis of cells in sodium dodecyl sulfate (SDS)
sample buffer (50mM-Tris-HCl (pH 6.8), 2% SDS, and 10% glyc-
erol), followed by incubation at 95°C for 10 min. Livers of
untreated WT mice at E15.5, P0, P14, and P56 were sonicated in
lysis buffer [50-mMTris-HCl (pH 7.4), 1%Nonidet P-40, 0.1% so-
dium deoxycholate, 0.1% SDS, 150-mM NaCl, and 1% proteinase
inhibitor cocktail (Cat # 03,969-21; Nacalai Tesque)]. The tissue
lysates were centrifuged (9,000× g, 10 min, 4°C) to remove

insoluble material. Protein concentrations were determined using
a bicinchoninic acid (BCA) protein assay reagent kit (Pierce
Biotechnology) before 2-mercaptoethanol and bromophenol blue
were added to each sample. The protein samples (15 lg=well) were
separated bySDS–polyacrylamide gel electrophoresis and then elec-
trotransferred onto a polyvinyl difluoride membrane (FluoreTrans®,
PVM020C-099) (Bio-Rad Laboratories) at 2mA=cm2 for 1 h, as
described previously (Kyhseandersen 1984). Membranes were
blockedwith 5%dry skimmilk inTris-buffered salinewith detergent
[20mMTris-HCl (pH 7.5), 150mMNaCl, and 0.1% Tween 20] and
then incubated with a primary antibody for 1 h at room temperature:
an antihemeoxygenase-1 (HO-1) antibody (1:1,000; Cat #SPA-895;
Lot #01,101,357; StressGen Biotechnologies), anti-Nrf2 antibody
(1:200; Cat #sc-13,032; Lot #D0815; Santa Cruz Biotechnology),
and anti-CSE antibody were prepared as described previously
(20 lg=mL) (Shinkai et al. 2017). Immunoreactive bands were
visualized by enhanced chemiluminescence (Chemi-Lumi One L;
Nacalai Tesque) and detected with a LAS-3000 (Fujifilm). Signal
intensities were quantified by Multi Gauge software, version 2.2
(Fujifilm).

Cell Viability Assay
The 3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyl tetrazolium bro-
mide (MTT) assay was used to estimate cell viability, as described
previously (Denizot and Lang 1986). Briefly, primary mouse he-
patocytes in 96-well plates prepared as above from WT, CSE

Figure 1. Flowchart of the experimental design. WT, CSE knockout (KO), Nrf2 KO, and DKO mice and their primary hepatocytes were used to clarify the
protective role of Nrf2 and CSE against environmental electrophiles-induced toxicity (right side). The developmental stages of WT mice was used to analyze
the developmental level of sulfur nucleophiles and its related enzymes (left side). Note: CSE, cystathionine c-lyase; DKO, Nrf2/CSE double knockout; Nrf2,
nuclear factor-erythroid 2-related factor 2; RSS, reactive sulfur species; WT, wild type.

Environmental Health Perspectives 067002-3 127(6) June 2019



KO, Nrf2 KO, and DKO mice were exposed to environmental
electrophiles (CdCl2, MeHg, 1,4-NQ, crotonaldehyde, or acryl-
amide) in serum-free medium and cultured at 37°C in a humidi-
fied atmosphere with 5% CO2. Nonexposed cells were used as
control. After 24 h, cells were treated with 5 mg=mLMTT for 4 h
at 37°C. After removing the medium, dimethylsulfoxide
(100 lL=well) was added to dissolve the formazan precipitate.
Absorbance at 540 nm was read with an iMark™ microplate
reader (Bio-Rad Laboratories).

Sulfur Nucleophile Detection
Liquid chromatography–electrospray ionization–tandem mass spec-
trometry (LC-ESI-MS/MS) analysis with HPE-IAM was used to
determine the levels of sulfur nucleophiles, including reactive per-
sulfides, in primary mouse hepatocytes and brain tissue, as we
previously established (Akaike et al. 2017). Primary mouse hepa-
tocytes in 12-well plates prepared as above from WT, CSE KO,
Nrf2 KO, and DKO mice were washed twice with ice-cold PBS
and collected by scraping into PBS; then cellular pellets were
recovered by centrifugation (500× g, 5 min, 4°C). Using an ultra-
sonic disruptor, UD-201 (TOMY), cellular pellets were homoge-
nized in 100 lL of a methanol solution containing 1mM HPE-
IAM on ice, after which cell lysates were incubated at 37°C for 30
min to yield b-ð4-hydroxyphenylÞethyl acetamide (HPE-AM)
adducts of sulfur nucleophiles. After centrifugation (14,000× g, 10
min, 4°C), supernatants were collected. Brain samples (100 mg
each) of untreated WT mice at E15.5, P0, P14, and P56 were soni-
cated in 1-mL lysis buffer [50-mM Tris-HCl (pH 7.4), 1% Nonidet
P-40, 0.1% sodium deoxycholate, 0.1% SDS, 150-mM NaCl, and
1% proteinase inhibitor cocktail]. The tissue lysates were centri-
fuged (9,000× g, 10 min, 4°C) to remove insoluble material. The
supernatants were filtered through an Amicon® Ultra 3K to obtain
low-molecular-weight (LMW) fractions. The LMW fractions were
incubated with 5-mM HPE-IAM at 37°C for 30 min to yield HPE-
AM adducts of sulfur nucleophiles. Aliquots containing HPE-AM
adducts were diluted fourfold with 0.1% formic acid containing
known amounts of isotope-labeled internal standards (Table S1),
which were then analyzed by LC-ESI-MS/MS for sulfur nucleo-
phile determination. A triple quadrupole mass spectrometer, EVOQ
Qube™ (Bruker), coupled to the Advance™ UHPLC system
(Bruker) was used to perform LC-ESI-MS/MS. Sulfur nucleophile–
derived HPE-AM adducts were separated by Advance™ UHPLC
with a YMC-Triart C18 column (50× 2:0 mm inner diameter)
under the following elution conditions: mobile phase A (0.1% for-
mic acid) with a linear gradient ofmobile phase B (0.1% formic acid
in methanol) from 5% to 90% for 15min at a flow rate of
0:2 mL=min at 40°C. Mass spectra were obtained at each tempera-
ture of the ESI probe, desolvation line, and heat block at 350 and
250°C, respectively. The nebulizer, heating, and drying nitrogen gas
flows were set to 25, 50, and 50 pound per square inch (psi), respec-
tively. VariousHPE-AMadducts of sulfur nucleophiles were identi-
fied and quantified bymultiple reactionmonitoring.

Alanine Transaminase Activity Assays
ALT assays were performed using the Transaminase C-II Test
Wako kit (Wako Pure Chemical Industries), according to the
manufacturers’ instructions.

Histopathological Analysis
Paraffin-embedded liver tissue was sectioned to 3-lm-thick sec-
tions. Tissue sections were stained with hematoxylin and eosin
(H&E) and Masson’s trichrome (MT) by standard techniques.
Images were acquired using a brightfield microscope, BZ-X710
(Keyence).

Mouse Behavioral Test
The rotarod test evaluates motor coordination, balance, and motor
learning. The Rota-Rod, ENV-577M (Med Associates) was accel-
erated from 0 to 40 rpm over 4 min and maintained at a constant
speed for an additional 1min. The latency to fall was then recorded.
Animals were subjected to daily sessions of three trials separated
by 15-min intertrial intervals. The test was repeated for 16 con-
secutive days after the first day of exposure. The latency to fall
was scored each time as an index of motor coordination. Percent
of tremors were calculated as the number of mice that had at least
one tremor divided by the total number of mice in each group.
Tremors were monitored daily for 14 d after the first treatment of
MeHg.

CSE Activity Measurement
Liver tissues of untreatedWTmice at E15.5, P0, P14, and P56 were
homogenized in 50mMTris-HCl (pH 7.5) containing the proteinase
inhibitor cocktail, followed by centrifugation at 9,000× g for 10
min at 4°C. The supernatants were applied to a PD MiniTrap™
G-25 column equilibrated with 50mM Tris-HCl (pH 7.5) to obtain
high-molecular-weight (HMW) fractions. The reaction mixture
(100 lL) contained 100mMHEPES buffer (pH 7.5), 0:5mMcysta-
thionine or CysSSCys, 0:1mM pyridoxal phosphate, and protein
(100 lg) from the HMW fraction. The reaction mixture was incu-
bated at 37°C for 30 min and then deproteinized in methanol,
followed by centrifugation at 14,000× g for 10 min at 4°C. The
supernatants were then subjected to LC-ESI-MS/MS analysis.

Real-Time Polymerase Chain Reaction
Total RNA from livers of untreated WT mice at E15.5, P0, P7,
P14, and P56 were extracted with RNeasy Lipid Tissue Mini Kit
(Qiagen), and cDNA was synthesized using High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems™), according to
the manufacturers’ protocols. Real-time PCRwas performed using
Power SYBR™ Green PCR Master Mix (Applied Biosystems™)
with a 7500 Real-Time PCR System (Applied Biosystems™). The
PCR primerswere designed as follows: forward 50-CTTGCTGCC
ACCATTACG-30 and reverse 50-TTCAGATGCCACCCTCCT-30
forCse (Li et al. 2015), forward 50-CGAGATATACGCAGGAGA-
GGTAAGA-3 0 and reverse 5 0-GCTCGACAATGTTCTCCAG-
CTT-30 for Nrf2 (Jiang et al. 2016), forward 50-GTCTTCCACCA-
GTGTCAGCA-30 and reverse 50-GGTCTTCAGGAAGTCCTT-
AATGGT-30 for Cars2 (design with Primer3Plus: http://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/), and for-
ward 50-TCAACAGCAACTCCCACTCTTCCA-30 and reverse 50-
ACCCTGTTGCTGTAGCCGTATTCA-30 for glyceraldehyde 3-
phosphate dehydrogenase (Gapdh) (Gnedeva and Hudspeth 2015).
PCR conditionswere 50°C for 2min, 95°C for 10min, and 45 cycles
of 95°C for 15 s and 60°C for 1 min. Melting curve analysis was
conducted to ensure amplification of a single product. Cse, Nrf2,
Cars2, and Gapdh mRNA levels in each RNA sample were deter-
mined using a standard curve. Fold changes in expression of each
gene were assessed after the mRNA level was normalized toGapdh
expression.

Statistical Analysis
Statistical significance was assessed by analysis of variance
(ANOVA) with correction for multiple comparisons in post-hoc
analysis. Rotarod test were analyzed by a two-way repeated-
measures ANOVA with Dunnett's post hoc test. Other multiple
comparisons were analyzed by one-way ANOVA with Dunnett's
or Tukey's post hoc test. Survival rates were analyzed by Log-
rank (Mantel-Cox) test. All statistical analyses were performed
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using Graphpad Prism, version 6.0h (Graphpad Software). A
p<0:05 was considered as significant.

Results

Production of Sulfur Nucleophiles in Wild-Type, CSE
Knockout, Nrf2 Knockout, and Double-Knockout Mouse
Hepatocytes
We examined sulfur nucleophile levels in primary mouse hepato-
cytes from WT, CSE KO, Nrf2 KO, and DKO mice by means of
LC-ESI-MS/MS analysis. We found that in the hepatocytes of
CSE KO and DKO mice, GSH, CysSH, CysSSH, and GSSH lev-
els were significantly lower compared with WT cells, whereas in
Nrf2 KO mice hepatocytes, only the GSH level was significantly
lower (Figure 2).

Roles of Nrf2 and CSE in Protection of Liver Cells against
Environmental Electrophiles
We then exposed the primary hepatocytes from WT, CSE KO,
Nrf2 KO, and DKO mice to various environmental electrophiles,
including Cd; MeHg; 1,4-NQ; crotonaldehyde; and acrylamide,
and assessed cytotoxicity of these environmental electrophiles.
Their cytotoxicity were evaluated by median lethal concentration
values (Table 1), which were determined from a dose-dependent
cell viability curve using the MTT assay on the primary hepato-
cytes of each genotype treated with various environmental elec-
trophiles (Figure 3A–E). As shown in Figure 3 and Table 1, Nrf2
deletion (triangle dots) resulted in significantly greater cell toxic-
ity by Cd; MeHg; and 1,4-NQ, whereas CSE deletion (square
dots) resulted in significantly greater Cd-mediated cytotoxicity
only (Figure 3A–C). Neither Nrf2 nor CSE deletion caused sig-
nificantly greater cytotoxicity by crotonaldehyde or acrylamide
compared with WT mice (Figure 3D,E).

In contrast, the cytotoxicity of all examined environmental
electrophiles was markedly greater in the DKO hepatocytes (dia-
mond dots) than with the single-KO counterparts (Figure 3A–E).
We also examined the effect of CSE deletion on Nrf2 induced by

Cd because we found that level of all evaluated sulfur nucleo-
philes was lower in the CSE KO mice than in the WT mice
(Figure 2). As a result, we found that CSE KO mice had signifi-
cantly higher levels of Nrf2 and its downstream protein HO-1 af-
ter treatment with Cd (Figure 3F).

Treatment of WT mice with CdCl2 (4 mg=kg) did not affect
liver when evaluated by H&E and MT staining, whereas CSE
KO or Nrf2 KO mice with the same dose of CdCl2 injection
showed liver damage as indicated by HE staining (Figure 3G,
dotted lines). Cd-treated DKO mice exhibited much more severer
liver injury and fibrosis than WT mice and CSE and Nrf2 single-
KO mice (Figure 3G, blue stained area). Consistent with these
results, the plasma ALT level, another indicator of hepatotoxic-
ity, in DKO mice was much higher than that in CSE or Nrf2
single-KO mice treated with Cd (Figure 3H). Plasma ALT levels
without the Cd treatment were not significantly different in all ge-
notypes (Figure S1).

Contribution of CSE to Protection against MeHg-Induced
Neurotoxicity
Under non–MeHg treated conditions, WT, CSE KO, Nrf2 KO,
and DKO mice showed comparable motor coordination as meas-
ured by the rotarod test (Figure 4A), and no tremors (Figure 4B).
However, MeHg treatment (5 mg=kg for 12 d) resulted in signifi-
cantly poorer motor coordination and a greater number of detect-
able tremors in CSE KO, Nrf2 KO, and DKO mice, but not in
WT mice (Figure 4A,B). Survival rates were also significantly
lower for MeHg-treated CSE KO, Nrf2 KO, and DKO mice than
for MeHg-treated WT mice (Figure 4C). All single-KO and DKO
mice died within 21 and 14 d after the first treatment of MeHg,
whereas WT mice given MeHg shown no mortality and were
healthy appearing for at least 30 d after the first treatment of
MeHg. The effects of MeHg on motor coordination and tremors
appeared to be exacerbated in DKO mice compared with Nrf2 or
CSE KO mice (Figure 4A,B), with the survival effects in the
DKO mice appearing to be more severe than the sum of those in
either KO alone (Figure 4C).

Figure 2. Effects of CSE and/or Nrf2 deletion on sulfur nucleophile contents. Sulfur nucleophile levels in primary mouse hepatocytes from WT, CSE knockout
(KO), Nrf2 KO, and DKO female mice. Cells were sonicated and incubated with 1mM b-ð4-hydroxyphenylÞethyl iodoacetamide (HPE-IAM) at 37°C for 30
min to yield HPE-AM adducts. The adducts were identified and quantified by liquid chromatography–electrospray ionization–tandem mass spectrometry
(LC-ESI-MS/MS) using isotope-labeled internal standards. Data are shown as mean± standard error of themean ðSEMÞ (n=3, each genotype). Note: CSE, cys-
tathionine c-lyase; DKO, Nrf2/CSE double knockout; CysSH, cysteine; CysSSH, cysteine persulfide; GSH, glutathione; GSSH, glutathione persulfide; HPE-
AM, b-ð4-hydroxyphenylÞethyl acetamide; Nrf2, nuclear factor-erythroid 2-related factor 2; WT, wild type. *p<0:05 and **p<0:01, compared with WT cells
by one-way analysis of variance (ANOVA) with Tukey's post hoc test.
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Developmental Expression of CSE and Reactive Sulfur
Species

We investigated developmental expression of Nrf2, CSE, and
other RSS-producing enzymes such as CARS2 in the livers of
WT mice at the following developmental stages: E15.5, P0, P14,

and the adult stage (P56). Western blot and real-time PCR analy-
ses revealed that protein (Figure 5A) and mRNA (Figure S2A)
levels of CSE at developmental stages such as E15.5 and P0 were
significantly lower than those at the adult stage, while practically
no appreciable differences of Nrf2 and CARS2 mRNA were seen
except for Nrf2 at P0 (Figure S2B,C). Furthermore, when CSE

Table 1. Comparison of lethal doses in CSE and/or Nrf2-deficient primary mouse hepatocytes exposed to various environmental electrophiles.

Cd MeHg 1,4-NQ Crotonaldehyde Acrylamide

LC50
(lM)

95%
confidence
intervals

LC50
(lM)

95%
confidence
intervals

LC50
(lM)

95%
confidence
intervals

LC50
(lM)

95%
confidence
intervals

LC50
(lM)

95%
confidence
intervals

WT 16.8 15.4, 18.3 7.9 7.6, 8.3 5.2 5.0, 5.4 214 206, 223 19.4 16.5, 22.8
CSE KO 9.0a 8.0, 10.0 9.1 8.6, 9.7 6.0 5.8, 6.2 200 193, 209 18.2 16.4, 20.2
Nrf2 KO 5.4a 4.8, 6.0 3.5a 3.4, 3.7 4.0a 3.8, 4.2 231 222, 240 19.6 17.1, 22.5
DKO 1.5a,b,c 1.3, 1.8 1.5a,b,c 1.4, 1.7 2.7a,b,c 2.4, 3.0 58a,b,c 53, 64 3.1a,b,c 2.8, 3.4

Note: WT, CSE knockout (KO), Nrf2 KO, and DKO cells were exposed to the indicated compounds for 24 h, and then MTT assays were performed as shown in Figure 2. LC50 values
were determined by nonlinear regression. Statistical analyses were performed by Graphpad Prism software from three independent experiments. Cd, cadmium; CSE, cystathionine c-lyase;
DKO, Nrf2/CSE double knockout; MeHg, methylmercury; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyl tetrazolium bromide; Nrf2, nuclear factor-erythroid 2-related factor 2; WT,
wild type; 1,4-NQ, 1,4-naphthoquinone.
ap<0:01, bp<0:01, cp<0:01 compared with WT, CSE KO, and Nrf2 KO, respectively, by one-way ANOVA of log10-transformed LC50 values with Tukey’s post hoc test.

Figure 3. Effects of CSE and/or Nrf2 deletion on environmental electrophiles-induced hepatotoxicity in vitro and in vivo. (A–E) Primary hepatocytes from
WT, CSE knockout (KO), Nrf2 KO, and DKO female mice were exposed to the indicated compounds at the indicated concentrations for 24 h, and then MTT
assays were performed. Each value is the mean± standard error of themean ðSEMÞ of three independent experiments. See also Table 1 for LC50 values with sta-
tistical analyses. (F) WT and CSE KO primary mouse hepatocytes were exposed to the indicated concentrations of CdCl2 for 12 or 24 h. Total cell lysates
(15 lg of protein) were subjected to Western blotting using the indicated antibodies. Representative images are shown. Actin was used to normalize protein
levels. Intensities are presented as fold changes relative to 0 lM CdCl2 exposure. Data are shown as mean±SEM (n=3, each genotype). *p<0:05 and
**p<0:01, compared with 0 lM CdCl2 exposure by one-way analysis of variance (ANOVA) with Tukey's post hoc test. (G–H) WT, CSE KO, Nrf2 KO, and
DKO male mice were treated with or without CdCl2. Liver tissue and plasma samples were collected after 18 h of treatment. (G) Representative stereoscopic
images of liver from WT, CSE KO, Nrf2 KO, and DKO mice administered CdCl2 (upper panels), corresponding hematoxylin and eosin (H&E)–stained liver
sections (middle panels, necrotic area outlined), and Masson’s trichrome (MT) staining of histopathological liver sections (bottom panels, blue staining indi-
cates collagen fibers). (H) Plasma alanine transaminase (ALT) levels with CdCl2 treatment. Scale bar represents 100 lm. Data are shown as mean±SEM
(n=5, each genotype). ap<0:05, WT vs. DKO. bp<0:05, CSE KO vs. DKO. cp<0:05, Nrf2 KO vs. DKO. Statistical analysis was performed by one-way
ANOVA with Tukey's post hoc test. Note: CSE, cystathionine c-lyase; DKO, Nrf2/CSE double knockout; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyl tet-
razolium bromide; Nrf2, nuclear factor-erythroid 2-related factor 2; WT, wild type.
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activities involved in production of CysSH and its persulfide and
polysulfide during developmental stages were measured after
incubation of the mouse liver HMW fraction with cystathionine
or CysSSCys as substrates, production of CysSH, CysSSH, and
CysSH polysulfide (CysSSSH) at developmental stages was

A

B

C

Figure 4. Effects of CSE and/or Nrf2 deletion on MeHg-induced neurotoxic-
ity. (A–C) WT, CSE knockout (KO), Nrf2 KO, and DKO female mice were
treated with MeHg (5 mg=kg=d) for 12 d. (A) Latency to fall during the
rotarod test. The test was repeated for 16 consecutive days after the first day
of exposure. Data are shown as mean± standard error of themean ðSEMÞ
(n=5, each genotype). ap<0:05, WT vs. CSE KO. bp<0:05, WT vs. Nrf2
KO. cp<0:05, WT vs. DKO. Rotarod test were analyzed by a two-way
repeated-measures analysis of variance (ANOVA) with Dunnett's post hoc
test to compare strains to the WT. (B) Percentage of total mice that had at
least one tremor. Tremors were monitored daily for 14 d after the first treat-
ment. (C) Survival rates for 30 d after the first treatment. Survival rates were
analyzed by log-rank (Mantel-Cox) test. Note: CSE, cystathionine c-lyase;
DKO, Nrf2/CSE double knockout; Nrf2, nuclear factor-erythroid 2-related
factor 2; WT, wild type.

A

B

C

Figure 5. Developmental expression of hepatic CSE and levels of CysSH
and its persulfide in the brain. (A) Liver tissues of WT mice at various de-
velopmental stages and the adult stage were analyzed for CSE protein
expression by Western blotting. b-actin was used to normalize protein levels.
(B–C) LC-ESI-MS/MS analysis was employed to determine the levels of
(B) CysSH, and (C) CysSSH in low-molecular-weight fractions from the
brains of mice at developmental and adult stages. Data are shown as box-
and-whisker plot (n=3, each age). The points, mean values; the horizontal
lines, median values; the box limits, interquartile range; the whiskers, maxi-
mum and minimum data values. Note: CSE, cystathionine c-lyase; CysSH,
cysteine; CysSSH, cysteine persulfide; LC-ESI-MS/MS, liquid chromatogra-
phy–electrospray ionization–tandem mass spectrometry; WT, wild type.
*p<0:05 and **p<0:01, compared with the adult stage (P56) by one-way
analysis of variance (ANOVA) with Dunnett’s post hoc test.

Environmental Health Perspectives 067002-7 127(6) June 2019



lower than that at the adult stage when cystathionine was used
(Table 2). In the case of CysSSCys, production of CysSSSH at
developmental stages was lower than that at the adult stage.
Consistent with these results, the levels of CysSH and CysSSH
(Figure 5B,C), but not GSH or GSSH (Figure S3), in the brain at
developmental stages were significantly lower than those at the
adult stage.

Discussion
In this study, we found that both the Nrf2 pathway and CSE path-
way play important roles in the protection against environmental
electrophile-induced toxicity in vitro and in vivo. DKO mice
were more sensitive to environmental electrophiles than their
single-KO counterparts, suggesting that the pathways mediate
different mechanisms in diminishing toxicities of reactive electro-
philes (Figure 6). Nrf2-mediated defense mechanism against
electrophiles is mainly attributable to GSH conjugation and its
excretion into extracellular spaces (Hayashi et al. 2003; Itoh et al.
1997; Ketterer et al. 1983; Kumagai et al. 2013; Toyama et al.
2011), whereas RSS produced by CSE can inactivate electro-
philes through the sulfur adduct formation (Abiko et al. 2015a,
2015b, 2017a). These findings further support the presence of
noncanonical pathway that detoxifies environmental electrophiles
under the regulation of CSE, in addition to the canonical pathway
regulated by Nrf2.

It is well recognized that Nrf2 plays a critical role in protec-
tion against oxidative and/or electrophilic stresses. In addition,
Nrf2 regulates the metabolic homeostasis through regulating a
number of detoxifying genes, such as GCL, GST (Itoh et al.
1997; Kim et al. 2010), and MRP (Hayashi et al. 2003), and gly-
cogen- and glucose-metabolism genes, such as glycogen branch-
ing enzyme (GBE) and phosphorylase b kinase subunit (PhK)
(Uruno et al. 2016). In agreement with other studies, we found
that Nrf2 deletion increased sensitivity to environmental electro-
philes MeHg (Toyama et al. 2007, 2011); Cd (Shinkai et al.
2016); 1,2-NQ (Miura et al. 2011); and 1,4-NQ (this study).
Surprisingly, crotonaldehyde- and acrylamide-induced cytotoxic-
ity were not affected substantially by single deletion of Nrf2. One
plausible explanation for the observation is that certain defense
mechanisms independent of Nrf2 may function against these re-
active electrophiles. In fact, it has been reported that NADPH-
dependent reductases are involved in detoxification of reactive
carbonyls in plants (Yamauchi et al. 2011), presumably by

reducing the carbonyl groups. Because expression levels of drug-
metabolizing enzymes that catalyze carbonyl reduction are rela-
tively high in hepatocytes (Agaton et al. 2003), Nrf2 may not be
crucial to diminish carbonyl electrophile cytotoxicity.

In this regard, CSE is another critical factor for protection
against electrophiles. CSE is involved in RSS production and
thereby capturing electrophiles to yield their sulfur adducts (Abiko
et al. 2015b; Millikin et al. 2016; Nishida et al. 2016; Ono et al.
2014; Yoshida et al. 2011). In fact, in the current study, we found
that the cellular contents of CysSH, CysSSH, GSH, and GSSH
were lower in CSE KO mice. Cd is an electrophilic metal responsi-
ble for causing acute hepatic injury in vivo (Rikans and Yamano
2000). We previously found that CSE deletion deteriorates Cd-
induced hepatotoxicity (Akiyama et al. 2017; Shinkai et al. 2017).
However, our current study revealed that CSE deletion did not
affect substantially the cytotoxicity elicited by the other electro-
philes; MeHg; 1,4-NQ; crotonaldehyde; and acrylamide in primary
mouse hepatocytes. An explanation for this observation is that al-
ternative defense pathway(s) may compensate the lack of CSE and
protect cells from the electrophilic damage. Consistent with this
notion, we found that CSE deletion enhanced Cd-mediated activa-
tion of Nrf2 and its downstream protein, HO-1. Such a phenom-
enon may be also seen in MeHg and 1,4-NQ because exposure of
cultured cells to MeHg (Toyama et al. 2007; Unoki et al. 2018;
Wang et al. 2009) and 1,4-NQ (Khan et al. 2011)-activated Nrf2

Figure 6. Schematic representation of parallel pathway in detoxifying envi-
ronmental electrophiles. Transcription factor Nrf2 is a central coordinator for
induction of detoxifying genes such as GCL, GST, MRP, and HO-1 (Shen and
Kong 2009; Yamamoto et al. 2018) and metabolic enzymes such as GBE
(Uruno et al. 2016). Canonical pathway: Many in vitro and in vivo studies
reported that Nrf2 contributes to detoxification of environmental electrophiles
via GSH adduct formation and subsequent excretion into extracellular spaces
(Miura et al. 2011; Toyama et al. 2007, 2011). Noncanonical pathway: Our
mouse model provided that RSS generation mediated by CSE contributes to
detoxifying environmental electrophiles through sulfur adduct formation.
Note: CSE, cystathionine c-lyase; E, environmental electrophile; GBE, glyco-
gen branching enzyme; GCL, glutamate–cysteine ligase; GST, glutathione
S-transferase; HO-1, hemeoxygenase-1; MRP, multidrug resistance-associated
protein; Nrf2, nuclear factor-erythroid 2-related factor 2; RSS, reactive sulfur
species.

Table 2. Product formation after incubation of liver proteins with CSE
substrates.

Substrate

Product
formed
(lM)

Developmental stage

E15.5 P0 P14 P56

Cystathionine CysSH 9:5± 0:4b 110± 27a 275± 62 332± 43
CtysSSH 1:2± 0:2b 5:4± 0:4b 11:1± 0:5 12:7± 1:1
CysSSSH 1:1± 0:1b 1:5± 0:3b 5:6± 0:5 6:2± 0:3

Cystine CytsSH 134± 32 86± 25 85± 6 153± 18
CysSSH 53±2b 68± 3b 71± 2b 85± 2
CysSSSH 3:9± 0:3b 10:2± 0:3b 36:2± 2:3b 93:9± 10:8

Note: Cystathionine (0:5mM) or cystine (0:5mM) were incubated with the high-molec-
ular-weight fraction (1 mg=mL) from the liver of wild-type mice at various develop-
mental stages and the adult stage in 100mM HEPES buffer (pH 7.5) containing
pyridoxal phosphate (0:1mM) at 37°C for 30 min, and then CysSH, CysSSH, and
CysSSSH were measured by b-ð4-hydroxyphenylÞethyl iodoacetamide labeling in liquid
chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS)
analysis. Data are shown as mean± standard error of themean ðSEMÞ (n=3, each age).
CSE, cystathionine c-lyase; CysSH, cysteine; CysSSH, cysteine persulfide; CysSSSH,
cysteine trisulfide; E, embryonic day; HEPES, [4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid]; P, postnatal day.
ap<0:05 and bp<0:01, compared with the adult stage (P56) by one-way analysis of var-
iance (ANOVA) with Dunnett’s post hoc test.
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signaling pathway. We suggest that the function of Nrf2 is potenti-
ated in CSE KO mice, thus protecting cells against electrophiles-
mediated cell toxicity.

In contrast to the results in vitro, CSE deletion enhanced sen-
sitivity to MeHg in vivo. It appears likely that such a difference
between in vitro and in vivo in terms of MeHg toxicity is due to
the transport system of MeHg into the brain. It is well-known
that MeHg is converted to the MeHg–CysSH adduct to cross the
blood–brain barrier (Kerper et al. 1992). We previously found
that CSE deletion decreases production of ðMeHgÞ2S after MeHg
treatment (Abiko et al. 2015b), suggesting that formation and
subsequent brain accumulation of the MeHg–CysSH adduct
increases in the CSE KO mice.

DKO mice are highly sensitive to all environmental electro-
philes examined in vitro and in vivo. Of note, crotonaldehyde-
and acrylamide-induced cytotoxicity appeared not to be signifi-
cantly affected by single deletion of Nrf2 or CSE, whereas com-
pound deletion of Nrf2 and CSE markedly exacerbated the
cytotoxicity caused by these carbonyl electrophiles. These results
suggest that cellular defense mechanisms against these electro-
philes are largely dependent on these two pathways, which can
compensate for each other. Therefore, it appears that the detoxifi-
cation ability mediated by Nrf2 or CSE is sufficient to block cro-
tonaldehyde and acrylamide toxicity.

It has been shown that developing fetuses and neonates are
highly susceptible to chemicals, including environmental electro-
philes (Unüvar and Büyükgebiz 2012). For example, MeHg can
easily pass through the placenta into the fetus via a neutral amino
acid carrier, thereby causing adverse effects on fetal brain devel-
opment (Onishchenko et al. 2007). Thus, the developing fetus
and neonates are considered to be highly susceptible to MeHg in
animals (Rice and Barone 2000) and humans (Grandjean et al.
1997, 2010; Knobeloch et al. 2007). Because the present study
showed that deletion of CSE in mice exacerbated MeHg-induced
neurological dysfunction, a lower level of CSE expression (Ishii
et al. 2004) and its enzymatic activity, together with lower produc-
tion of RSS at developmental stages, seem to cause the vulnerabil-
ity to electrophiles. It is also known that there are sex differences
in the vulnerability to electrophiles (Gandhi et al. 2014; Kim et al.
2014; Kippler et al. 2012; Shimada et al. 2012). Some studies
have reported that the expression of RSS-producing enzymes,
including CSE, is affected by sex hormones (Brancaleone et al.
2015; Vitvitsky et al. 2007). These findings lead us to speculate
that CSE-dependent RSS level may potentially contribute to sex
differences in the vulnerability to electrophiles. Since each experi-
ment in this study employed either only one of male or female
mice, we cannot exclude the possibility that the gender of the ani-
mal affected our results. Sex differences in the role of RSS in vul-
nerability to electrophiles should be investigated in the future
study.

Although GSH is the most abundant sulfur nucleophile in vari-
ous cells, it is largely protonated at physiological pH because of its
high pKa value of approximately 9 (Armstrong 1991). For this rea-
son, conjugation reactions of electrophiles with GSH are required
because the pKa value decreases from 9 to 6–7 after the interaction
of GSHwith GST (Barry et al. 1995). However, pKa values of per-
sulfides/polysulfides are lower than those of monosulfides, such as
GSH and CysSH (Cuevasanta et al. 2015; Iciek et al. 2016). For
example, the pKa value of CysSSH predicted by chemical calcula-
tions is estimated to be 4.34 (Cuevasanta et al. 2015), indicating
that RSS are able to nonenzymatically react with environmental
electrophiles to form their sulfur adducts at physiological pH, even
without GST. Taken together, RSS-mediated protection against
electrophiles appears to be a primary defense system compared
with the Nrf2-dependent detoxification system with GSH, because

RSS are constitutively produced by CSE and CARS2, whereas gene
expression of GCL, GST, and MRP involved in conjugation with
GSH and subsequent excretion of GSH adducts into extracellular
space are cooperatively regulated by Nrf2 (Hayashi et al. 2003; Itoh
et al. 1997). On the other hand, it is known that the expression of
CSE is, at least in part, transcriptionally regulated by activating tran-
scription factor 4 (ATF4) (Mistry et al. 2016; Sbodio et al. 2018).
Some studies suggested that Nrf2 is a positive regulator of ATF4
under the condition of electrophilic stress (Afonyushkin et al. 2010;
Terashima et al. 2013). Thus, cross talk between Nrf2 signaling and
CSE expressionmight bemediated byATF4 in response to environ-
mental electrophile exposure.

While there are numerous reports of beneficial effects elicited
by pretreatment with Nrf2 activators in food (e.g., vegetables,
wine, and fruit) to repress toxicity (Iranshahy et al. 2018; Liu et al.
2016; Long et al. 2016; Noh et al. 2015) and cancer (Chen and
Kong 2005; Talalay and Fahey 2001), we speculate that a direct
trap of environmental electrophiles by intake of foods containing
RSSwould also be an effective strategy for electrophile detoxifica-
tion. Therefore, we should focus on intake of food containing not
only Nrf2 activators but also sulfane sulfur–dependent chemicals
to diminish the health risks of environmental electrophiles.
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